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ANALYTICAL VIBRATION STUDY
OF A RING-STIFFENED CONICAL SHELL AND
COMPARISON WITH EXPERIMENT

By John L. Sewall and Donnell S, Catherines
Langley Research Center

SUMMARY

A Rayleigh-Ritz vibration analysis employing the concept of chosen modes is
described and appliedto a ring-stiffened, truncated conical shell for which experimental
vibration data are available for comparison, Simple power-series functions are employed
to approximate meridional components of the in-plane and normal displacements for free-
free and clamped-free end conditions. For the clamped-free shell, the series functions
satisfy displacement boundary conditions for a conical-shell frustum clamped at the small
end and free at the large end. Rings are treated as discrete elements of arbitrary cross
section, In addition to the primary extensional and bending stiffnesses of the ring,
together with its mass and centroid location inside or outside the shell wall, other so-
called secondary stiffnesses and inertias are included to account for out-of-plane bending,
cross-sectional asymmetry (product of inertia), warping, rotatory inertia, and the merid-
ional centroid position relative to the ring attachment point.

Good agreement between analytical and experimental frequencies and mode shapes
was obtained for the shell with a ring of rectangular cross section attached near the
clamped end and with rings of Z-shaped cross section attached at different stations along
the shell meridian., Analytical results were converged with 12 power-series modal func-
tions approximating the meridional component of the normal displacement (or w) for the
shell without Z-rings, 16 w-terms for the shell with a Z-ring attached to the free end, and
17 w-terms for the shell with an additional Z-ring midway along the meridian. Agreement
was best for the shell without Z-rings and was better for the model with the Z-ring at the
free end than for the model with two Z-rings. Agreement was also better for circumfer-
ential modes where shell effects predominated.

For circumferential modes where ring effects predominated, in some instances
secondary stiffnesses and inertias caused changes in frequency of over 40 percent and
correspondingly large changes in mode shape. The modes where shell effects predomi-
nated were negligibly affected by these added terms for the single-ring shell, and only a
small increase in frequencies was noted for the two-ring shell.



INTRODUCTION

Various structural dynamics problems have been encountered in rocket nozzles
and interstage launch-vehicle structures during the past several years and are antici-
pated in planetary entry vehicles. These problems have stimulated considerable interest
in dynamic studies of conical-shell configurations which are among the basic components
of these aerospace structures. Numerous vibration studies have been made for conical
shells, and some of these are reported in references 1 to 6 for thin reinforced shells
having semivertex angles of 200 or less. Motivation for investigating the vibrations of
shells of wider cone angles has come largely from the requirements of large, blunt-body,
lightweight structures for entry into sparse planetary atmospheres. Reference 7 and the
present paper report vibration studies of thin-shell conical frustums with semivertex

angles of as much as 600,

The main purpose of the present paper is to demonstrate the use of a linear
Rayleigh-Ritz analysis in calculating the vibration modes of a 60° ring-stiffened, conical-
shell frustum. Experimental vibration modes obtained in an unpublished study by
Eugene C. Naumann, John S. Mixson, and Earl C. Steeves of the Langley Research Center
are compared with analytical vibration modes of the present analysis for the shell struc-
ture without payload mass. Another purpose of the paper is an evaluation of the effects
of out-of-plane bending, cross-sectional asymmetry, warping, and rotatory inertia of the
stiffener. The ring stiffeners are treated as discrete elements with their stiffness and
mass properties lumped at the meridional ring locations. Circumferential components
of in-plane and normal displacements are each expressed by single-term trigonometric
functions, and meridional components are each expressed by a selected number of power-
series functions. The analysis is essentially the same as that of reference 7 except for
the choice of different power-series expansion functions.

Comparisons between results of the present analysis and the previously noted unpub-
lished study include not only the shell stiffened by Z-shaped rings but also the shell stiff-
ened by a ''base' ring of rectangular cross section (close to the small end of the shell)
and the free Z-rings. Following the general development of the frequency equations for
the shell-ring combination and the free ring, the application of the analysis is demon-
strated first for the base-ring configuration and next for the shell with Z-rings. Pertinent
details of the analytical development in the main text are given in three appendixes which
include a derivation of the ring strain-displacement relations and listings of the matrix

elements.



SYMBOLS

A, B, E, primary stiffness submatrices

F,G,H

AAjm,R» ABjm,R’AEjm,R, secondary stiffness and eccentricity contributions to ring
AGjm,R’ AHjm,R stiffness matrix elements (see appendix B)

Ap ring cross-sectional area

a,(t), a:(t) meridional in-plane generalized coordinates of shell

by (t), bi(t) circumferential in-plane generalized coordinates of shell

cm(t) ’ C]' (t)

EC,ER

radial (or normal) generalized coordinates of shell

Young's modulus of shell and ring, respectively

circular frequency, w/27, Hz

shear modulus of ring

shell thickness

moment of inertia of ring about its centroidal axis parallel to s-axis
moment of inertia of ring about its centroidal axis parallel to z-axis
moment of inertia of ring about s-axis (eq. (9a))

moment of inertia of ring about z-axis (eq. (9b))

product of inertia of ring with respect to §- and z-axes (egs. (8))

other moments of inertia defined in equations (8)

114 integrals based on power series (appendix B)



Je,R

JR

i,m

Ky1 .
M1 - .

k,M

L

P,Q

To

Ty

r2

S1

52

ATR

polar moment of inertia of ring cross section (defined by equation fol-
lowing equation (15))

torsional constant of ring

integers associated with meridional modes

. Ka4, elements of stiffness and mass matrices of free-ring frequency
. Myq equation (eq. (20) and appendix C)

integers identifying number of rings

meridional length of shell between ends, sg - sy

number of circumferential waves

integers identifying bounds of truncated series (eqs. (16))

shell radius (fig. 1(a))

average radius of truncated conical shell, (rl + rz)/ 2

radius of small end of shell

radius of large end of shell

meridional coordinate (fig. 1(a))

meridional distance from apex of cone to small end of cone (fig. 1(a))
meridional distance from apex of cone to large end of cone (fig. 1(a))

meridional distance from z-axis to ring centroid, positive toward large
end of shell (fig. 1(a))

kinetic energy

kinetic energy based on rotatory inertia terms in rings (eq. (15))
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time

strain energy

strain energy based on secondary stiffness terms in rings (eq. (7))
in-plane and normal displacements (fig. 1(a))

in-plane and normal displacements of ring in {5-2 plane (see appendix A)
meridional mode shape (eqs. (16))

normal coordinate (fig. 1(a))

distance from shell middle surface to ring centroid, positive outward
dominant mass submatrices

rotatory inertia contributions to ring mass submatrices

free-ring twist about elastic axis

ring warping constant (see egs. (8))

semivertex angle of shell

membrane strain-displacement relations (see egs. (1a), (1b), and (1c))

bending and torsion strain-displacement relations (see egs. (1d), (1le),
and (1£))

Poisson's ratio for shell
mass density
circumferential coordinate (see fig. 1(a))

ring rotations



w angular frequency, 27f, rad/sec

Subscripts:

c associated with shell

j,m denote jth and mth terms in power series and matrix elements
R associated with ring

t total

u,v,w associated with displacements u, v,and w

Superscript:

T transpose of a matrix

Dots over symbols denote partial differentiation with time t; for example,

P
at’ ot2 )
Primes with symbol X indicate differzentiation with respect to meridional coor-
ax 1" d<x
i . = m = m
dinate s; for example, Xp, &’ SmT

A circumflex ~ over a symbol denotes that the quantity is associated with local

coordinate system of ring (see fig. 1(a)).
METHOD OF ANALYSIS

The analytical frequencies and mode shapes were obtained by use of the Rayleigh-~
Ritz procedure for the ring-stiffened, truncated conical shell shown in figure 1(a). In-
plane and normal shell displacements u, v,and w are each assumed to be products of
single~term circumferential modes and multiterm meridional modes. The circumferen-
tial modes are expressed by trigonometric functions and the meridional modes are given
by general functions that may be chosen to satisfy particular displacement conditions at
the ends of the shell. Here, power-series functions are used, with the series altered so
as to satisfy displacement conditions for a clamped-free shell,




The ring is of arbitrary cross-sectional shape and is treated as a discrete element
moving with the shell, Stiffness and mass properties are assumed to be concentrated at
the ring location (i.e., in terms of (EA)R, (EIS) R» etc.) with the ring mass concentrated
at the ring center of gravity. Stiffener eccentricity effects due to rings attached inside
or outside the shell wall are explicitly considered, as in reference 8, for reinforced
cylindrical shells, An approximate frequency equation for the free ring is also derived
in addition to the shell-ring frequency equation.

Strain-Displacement Relations

The basic strain-displacement relations used in the strain-energy expressions of
the shell-ring combination are written in terms of the geometry and coordinate system
of figure 1(a). The ring is assumed to be attached to the shell so that, in the manner of
references 8 and 9, the displacements in the ring are compatible with those in the shell
middle surface at the ring-shell junction.

Isotropic shell.- The following strain-displacement relations for the conical shell

are based on reference 10:

€4 =g% (1a)
€99 = %(% +u sin § + w cos 5) (1v)
612=2ir-<r5—a§+%%-vsin 5) (1c)
K11 = - z:—;v (1d)
K99 = %Z(gv_(p cos & - —i%) - 2%—(2 —g—;v- (1e)
k12=%<%%cos6_%28%+ﬂ;ﬁ%_3vcos4gsin5_cczé%) 19

where €47, €99, €19 are associated with the shell membrane (or extensional) proper-
ties and kq1, K99, 7612 with shell bending and torsion. The subscript 1 identifies
the meridional direction and the subscript 2 denotes the circumferential direction.

Rings.- The ring strain-displacement relation may be written as

2 3
_ A1 1 (8% cosﬁ(aw) P w >
e =€ + ZK - 8|—=% - —) - Z2|— (2
22,R~ “22,R 22,R r% <3¢2>R TR \0S /R <r2 292 os/py )




where the first two terms represent the commonly used, or primary, extensional and
bending properties of the ring, and the remaining terms represent secondary effects to
be investigated, These effects are out-of-plane bending, cross-sectional asymmetry,
and warping. These additional terms are derived in appendix A by the approach used in
reference 9,

The effect of ring torsion is approximated by assuming that the torsional strain-
displacement relation is given by 7c12 (eq. (1f)) evaluated at r = rp-

Strain Energies

Isotropic shell.- To be consistent with reference 10 and equations (1), the shell

strain energy may be expressed by
Ech Sg (27 9 2 2
Ue = S‘ S‘ [611+2}J.€11€22+622+2(1 - e ]r do¢ ds
2(1 - u2) Js; Yo 12

Ech3

+ SSZ §2WEC%1 + 241Ky gy + Kag + 2(1 - “)'—{%2} a¢ ds @
24( - ‘uz) Sq 0

for a shell of constant thickness h, Young's modulus Eg, and Poisson's ratio u. Sub-
stitution of equations (1) into equation (3) yields

27 2
E_Buav 1 .
_T_—_FJ J [as r——as<—a¢+usm6+wcos6 —2(¢+u51n6+wcos§>

S2 r27
1-pf v, u w
+2r2(8s+8qb VSln5>tjrd¢)dS+ 1_ J J { 2

o2 2 2 ow 2
u 9wl _ 9w ow . 1 (1(8v "w) _ .
_ZF_Z_[?<¢COS(S Q) B-STSID 6:|+ [ 8¢) cos & - Mﬁ ¥51n5

2 . . 2
2(1'M)<§_ﬂ 5. 0w _3vcosdsind sin 6dw _cos b du
+——_r2 T 55 cos 5 50 T + = 5% Ir 9% r do¢ ds (4)

|é’

Rings.- With the rings treated as discrete elements, the strain energy for M-rings
is given by

27 o
) [N ST o T I
k



where each ring may be of a different material. If each ring is assumed to be uniform
around its circumference, equation (2) and equation (1f) may be substituted into equa-
tion (5) to give

1 M 1 27 5y 2
=§-z o (EA)RS‘ <—+usin6+wcos 6) do
k=1 EK 0 \% R

27
2\ .
8v . 1/0v “w\ ‘ow _.
+ 2(EA)pz —+usm6+wcos<3) =(—cos § - ——|-—1s5in 6| d
(EA)R RJO (a¢ R{r(aqb a¢2> 3s :‘R ¢

27 2
2
+ (EIS)RJ %<:—;; cos § - i%)- % sin 6| d¢ + (GJ)RS‘ <—— cos O
o R

0

2 . 2
“w 3v cos 6 sin & sin 6 ow _cos 6 du
% 90 e + = aqb I a¢) do g + AUg (6)

where the terms within the summation contain the primary ring stiffness and eccentricity
effects, and AUR represents the contribution of the secondary stiffness and eccentricity

terms as follows:

27 2
2 av - 9%u ow
AUgp == E {Z(EA)RSR S‘O <% +u sin & + w cos 6)R<m o5 oS 6>R do
e 2w\ _ aw _. 2u _ ow
- 2(EISZ)R F % cos &6 - —-—2- - g sin & 3 - 8_ cos & d¢
0 9¢ R\ 9¢ S R
Elgy 27 3
+2¥B_JA (a—:’b-+usin5+wcosé) azw d¢
R Jo \° R\a¢“ as/r
27 2 EI 27
2 1 2
+(EIZ)RJ (i“—g-iw-cosa> d¢+2( )RJ 1 o5 - 2W
0 \r ap2 9 R TR T\5¢ 52

27
3 Elg 2 3
- ¥ gin s /32w>d¢_2( )RJ<311§_3WC055><8W d¢
9s R@(P /R R o \r 9¢ 08 R\0P2 8s/R

27 2
. (E;")RJ < agw > d¢} 7
I‘R 0 \99<° os R k




The cross-sectional properties in equations (6) and (7) result from integration over
the ring cross section in the double integral of equation (5) and are defined as follows:

~
dhp = A ( saag-agsy [ e aag-
- 2
z dARp = Apz ‘y szdAp =1 S. 8)'zdAp =1 8
XAR R = ARZR Ag R=Isz R AR( )z dAR=Ip g (8)
5 Z2 dAR = IS R ‘S‘ (é)z dAR = IZ R y (éZ)z dAR = PR
AR ‘ AR ’ AR J

The properties in the left column of equations (8) identify the primary membrane and
bending stiffnesses (EA)rp and (EIS)R and the primary eccentricity term Zn which
locates the ring centroid inside or outside the shell wall. The properties in the middle
and right columns of equations (8) identify the secondary stiffness and eccentricity terms,
with 85 giving the meridional position of the ring centroid and (Elz)r, (Elsy)g, and
(EI)R being the out-of-plane bending stiffness, the product-of-inertia stiffness, and the
ring warping stiffness, respectively. All these properties are computed with respect to
the §,z axes shown in figure 1(a). The moments of inertia Is,r and I, g may also

be written as

2
Is,rR = Ios,R + ARZR (92)

2 \2
I, R=loz,R + AR(SR) (9b)

where Ios,R and Ioz,R are moments of inertia of the ring about the centroidal axes
parallel to the s-axis and z-axis, respectively.

It is noted here that the strain-displacement relations for the primary stiffnesses
in equation (6) satisfy all the rigid-body modes of a conical shell, whereas the strain-
displacement relations for the secondary stiffnesses in equation (7) satisfy only some of
these modes, as is shown in appendix A. This and other features of the secondary stiff-
nesses are discussed further in the application of the analysis,

Kinetic Energies

Isotropic shell.- The kinetic energy of the isotropic shell (neglecting rotatory

inertia) is given by

p.h s 27
Tc=—g—j‘ 25 (1'12+ir2+v'v2)r d¢ ds (10)
2 s1 V0
where p, is the mass density of the shell,

10



Rings.- With the rings treated as discrete elements, the kinetic energy for M-rings
may be written as follows:

1 M ~ 27 22 .2 .2
TR =5 Z pRj y Ui + V¢ + Wi [dAR er¢> (11)
2. & 0 YAR K

where pRr is the mass density of the ring and the barred quantities denote total veloc-
ities at any point in the ring, which are given by

7

W R= I'JR + Z¢1,R

.. . . 8 b} 8(2)1
ViR=VR* 2y R - % Kg)R + Z(a_gb)fJ (12)

W ,R=Wg - 861 g

with
y _ aw
P R= (‘ §§>R (132)
and
. 1 /. oW
=-—(V cos § - — 13b
¢2’R rR( B(P)R ( )

Equations (12) are based on the displacements given by equations (A3).

Substitution of equations (12) and (13) into equation (11) and integration over the
ring cross~-sectional area leads to the following expression for the ring kinetic energy:

M
1\ 2m 9 .2 .2
TR=3 PR . AR(uR+vR+erRd¢>k+ATR (14)
k=1

where the primary mass effects are contained within the summation term, and ATR
representing the secondary rotatory, eccentricity, and warping inertia contributions is
given by

11



M
27 . . .
_1 Vs dw _ Vv au
ATR = 3 kzl pRS‘ 2ARzR[:-u —_— F(V cos & - —¢)j] + 2ARSR(W % T %)R
2 1 N2 I 2 I 2
ow s,R _ow z,Rf{ou sz,R|. 9w
+Je,R(aS)R+—?—r% <vcos o 3¢)R+ 3 (3¢)R 2 —?—rR [ 55 50
-.];.au;(‘-f coOS 5-@) +2]_:_];JE<_82_W> ({r cos 5-_8_‘37) _2.1228'_<_8.£> <_iz{v_)
T 8¢ ¢/l r% \% /R /R r2 \0/R\3 39/
2
TR( 82v'v>
+—|—} dr, do (15)
r2R 8s 3¢p/)p( R

The polar moment of inertia of the ring cross section is

Je,R = SAR[Zz + ®%aag

Modal Functions

The in-plane and normal displacements u, v, and w are represented by

u(s,o,t) = cos n¢ am(t)Xmu(s) (16a)
m=P
Q
v(s,ét) = sin n¢ z b (H)X v (5) (16Db)
m=P
Q
W(s,6,0) = cos nd ) em(®Xmw(s) (160)
» m=P

The lower limit in each summation is determined by the functions chosen for the Xp,'s
and the displacement conditions at the ends of the shell. In the present study, the merid-
ional mode shapes were approximated by simple power-series functions, namely,

s -8 m
Xmu = Xmy = Xpw = §'2-_s1

with m =1 for the lower limitin u and v and m =2 for the lower limit in w so
as to satisfy the displacement conditions

12



at s = S1 for a clamped-free shell, When m =0 for the lower limits of all three
displacements, these functions are applicable to a free-free conical shell.

General Form of Frequency Equation

As a result of substituting equations (16) into the expressions for the strain and
kinetic energies of the shell and those of the ring and adding them together, the equations
of motion may be obtained from the following relations in accordance with the Rayleigh-
Ritz procedure with aj(t) = ijelwt, and so forth, for simple harmonic motion of
frequency w;
~

8_;-j Ue(a;) + Un(E;) - wz[Tc(aj) . TR(aj)D -0

2 {uefey)+ vrfe) - 2[refe) + (B } - o

)

8—% UC(E]-> + UR(EJ-) - wz[Tc(Ej) ¥ TR(E]-)]} =0

/

(17)

—_

In the present application, the maximum range of j was from 1 to 19. The operations
indicated in equations (17) lead to the familiar algebraic eigenvalue form

A B E MIA B E
BT F G +1—'%% 8T F G
T 6T uf, © 4=lET oT "y
a0 0 Mo of  ay a 0
-Allo g ol + ) [T B By bp=¢0 (18)
00 v]e KiltanT T v R c 0

pr2w2(1 - u2)

where the eigenvalue A is equal to B
c

with ro arbitrarily chosen as the
ry+ Ty

average radius of the shell in terms of the end radii ry and Ty (fig. 1(a)).

The letters inside the square matrices of equation (18) represent submatrices whose

13



elements are given in appendix B. The letters inside the column matrix represent sub-
matrices of the amplitude coefficients introduced into equations (17).

The solution of equation (18) was programed in double precision arithmetic (29 sig-
nificant figures) for the Control Data 6600 computer system, with eigenvalues and eigen-
vectors obtained by use of the threshold Jacobi method described in reference 11, for

example,

Ring Frequency Equation

An approximate frequency equation of a conically oriented free ring was derived on
the basis of the ring strain and kinetic energies from equations (6), (7), (14), and (15).
Four degrees of freedom were assumed: three displacements ugr, vy, wg of the
oW

free-ring elastic axis and twist about the elastic axis BR’ which replaces (— -gs—)R in

the ring strain and kinetic energies since the ring is no longer constrained to move with
the shell. The term (&v/ 8s)R in equation (6) is omitted. By following essentially the
same procedure used for the derivation of equation (18), these variables were represented

by

up(o,t) = é',n,Reiwt cos nq;

vRr(o,t) = En,Reiwt sin n¢

wR(®,t) = En’Reiwt cos n¢ (19)
Br(o.t) = an,Reiwt cos n¢J

<where in R P R’ En R» and d h.R are amplitude coefficients for the ring> and the
equations of motion were obtained from the ring portions of equations (17). The resulting
approximate frequency equation may be written in the general form

ah R 0
<) -Bpalld . =4 (20)

b

where ZR = pRr%Asz. Elements of the K and M 4 X 4 matrices, together with
pertinent details of the derivation, are given in appendix C.

14



APPLICATION OF ANALYSIS

The analysis described in the preceding sections was applied to a ring-stiffened,
isotropic, conical shell with a 60° semivertex angle. Vibration-test results for this con-
figuration were obtained in an unpublished study by Eugene C. Naumann, John S. Mixson,
and Earl C. Steeves. Comparisons are made between analytical and experimental fre-
quencies and mode shapes of the clamped-free shell with a ring of rectangular cross
section and with one and two ring stiffeners of Z-shaped cross section. The data needed
for the calculations are listed in table I along with the properties defined in equations (8)
for the ring cross-sectiona}/g&s;énptries specified in figure 1(b). The rings were attached
to the shell by rivets and between the rivets. Both shell and rings were made
of the same material (6061 aluminum alloy) so that E, = ER and Pe = PR- Frequencies
obtained from equation (20) are compared with experimental frequencies for the conically
oriented free Z-rings,

Comparison of Analytical and Experimental Results

Frequencies and mode shapes obtained by application of equations (18) and (20) are
compared with experimental frequencies and mode shapes in tables II to V and figures 2
to 7. The existence of two (or more) experimental frequencies for the same mode shape
is associated with the well-known phenomenon of dual resonances characteristic of rota-
tionally symmetric structures. The distributions of the normal displacement w along
the meridian are plotted in figures 3, 5, and 7. Comparisons between experiment and
theory are made first for the shell-ring combination on the basis of the primary ring
stiffness and mass terms in the analysis. Next, analytical and experimental free-ring
frequencies are compared with each other and with analytical shell-ring frequencies based
on the primary terms. Finally, the effects of ring secondary stiffnesses and inertias in
the analysis are considered.

Shell with ring at base attachment.- Analytical and experimental frequencies and

mode shapes of the conical shell without the Z-rings are presented in table II and fig-
ures 2 and 3. The experimental shell frequencies and mode shapes from the aforemen-
tioned unpublished study were measured for two different end-clamping conditions, one
with a 3-inch small-end radius and the other with a 4-inch radius. Comparisons between
analysis and experiment in this paper apply to the 3-inch (76.2 mm) model, in which the
clamped end was reinforced by a thick circular block with a ring of rectangular cross
section to which the shell was mounted, as shown schematically in figures 1(b) and 2.
This ""base" ring was assumed to move with the shell and was treated in the analysis as
a discrete element, just as the Z-rings were,

15



Generally, excellent agreement between theory and experiment was obtained over
the n-range from 0 to 15, Table II shows the nature of the analytical convergence; the
frequencies are satisfactorily converged with 12 power-series terms approximating the
meridional mode shapes of the w-displacement and 13 terms each approximating the u-
and v-meridional mode shapes. It is also evident that frequencies for high n-values,
above the n-value for minimum frequency, converged with fewer meridional terms than

frequencies for lower n-values.

Primary stiffness effects of one Z-ring.- Analytical and experimental frequencies
and mode shapes of the shell stiffened with the base ring and one ring of Z-shaped cross
section at the large free end of the shell are presented in table III and figures 4(a) and 5.
Converged analytical frequencies based on the primary ring terms are in excellent over-
all agreement with experimental frequencies for m = 1, and the agreement is generally
good for m = 2. In figure 5 good agreement is shown between experimental and analyti-
cal mode shapes based on the primary ring terms, except in the vicinity of the ring loca-
tion, Here, the analysis predicts a localized effect that wag not observed in the corre-
sponding experimental mode shapes (see m=1 and n=% and$ in fig. 5(a); m=2
and n =5, 6, and 8 in fig. 5(b)).

The humps in the frequency variations of figure 4 and the character of the mode
shapes in figure 5 are similar to those obtained by Newton in reference 6 for tubular
rings on a shell with a cone angle of 15.9°, Of possible further interest is the close
agreement in figure 4(b) of the trends in the frequencies of the conically oriented free
ring and the ring-shell frequencies in the regions of the curves where ring effects pre-
dominated. The free-ring frequencies calculated by use of equation (20) are given in
table V and are seen to be in fair agreement with experimental free-ring frequencies.
The letters denoting the largest eigenvectors in the analytical frequencies given in
table V indicate the predominance of one of the four motions involved. From table V(a),
it is evident that the w-motion predominated for n =2 and 3 and the u-motion predomi-
nated for n =4 to 10 of the first family of modes for the large ring. For the second
modal family, the rotation B predominated for n=6to 10, ug for n=2and 3, and

wgr for n= 4 and 5.

Except for m =2 and n = 6, table III shows satisfactory convergence in frequen-
cies with 16 w-terms and 17 u- and v-terms each. The table and figure 4(a) also indicate
convergence with four fewer terms for m=1 and n=0to2,6to 18 andfor m=2
and n =9 to 18 which are ranges where the shell effects predominated. The need for
the four additional terms is clearly evident for m=1 and n=3to5 and for m=2
and n=5to 8 in which the Z-ring effect was predominant,

Primary stiffness effects of two Z-rings.- Analytical and experimental frequencies
and mode shapes are presented in table IV and figures 6 and 7 for the effects of an
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additional Z-ring halfway along the meridian between the large and small ends of the
shell, as shown in the sketch of figure 6(a). As for the model with one Z-ring at the free
end of the shell, converged analytical frequencies based on the primary ring terms are
in generally good agreement with experimental frequencies, the agreement being better
for m=1 thanfor m =2 as figure 6(a) shows. However, agreement between theory
and experiment is not as good for the two Z-ring model as for the one Z-ring model of
figures 4 and 5. Figure 7(a) shows at least fair agreement between experimental and
analytical mode shapes, even in the vicinity of the intermediate ring. The agreement
near the large end ring is about the same as it was for the single Z-ring model.

Table IV indicates that 17 w-terms and 18 u- and v-terms were adequate to insure
convergence of most of the analytical frequencies for the two Z-ring shell to the degree
obtained for the single Z-ring shell. However, there were more modes requiring more
power-series terms than for the single Z-ring model, and these modes were not confined
to the ring-dominant regions of the curves as they were in the one Z-ring model. For
example, with 18 w-terms and 19 u- and v-terms, the frequencies for m =2 and
n=2,3,4, 18,19, and 22 were reduced significantly from the frequencies obtained with
17 w-terms and 18 u~- and v-terms. Obtaining converged results for these modes by
including still more power-series functions could not be accomplished because any addi-
tional terms would have caused enough numerical error in the solution of equation (18) to
result in negative eigenvalues.

The effects of two Z-rings differ from those for one Z-ring by the existence of
three minimum frequencies (fig. 6) instead of two as for the single Z-ring model (fig. 4).
Figure 6(b) shows good agreement in the trends of both sets of free-ring frequencies with
ring~-shell frequencies in the ring-dominant regions of the curves. Equation (20) predicts
the experimental frequencies of the small, conically oriented, free Z-ring about as well
as it does for the large free Z-ring, although the discrepancy between theory and experi-
ment becomes larger with increasing n-value. Table V(b) indicates a predominance in
wr for n=2and 3 andin up for n= 4 to 7 of the first family of free-ring modes.
For the second family, ur predominates for n=2and 3, wr for n=4,and B for
n=>5to 7.

Effects of ring secondary stiffnesses and inertias.- Inclusion of secondary stiffness
and inertia terms (egs. (7) and (15)) of the base ring resulted in increases in analytical
frequencies of 7 percent for m=1 and n=2 and 3l percent for m=1 and n= 3,

2
(See table II.) Other frequencies within the n-range covered were negligibly affected by

these additional terms. Meridional mode shapes shown in figure 3 were also negligibly
different from those based only on the primary terms (eqs. (6) and (14)).

The effects of including secondary stiffnesses and inertias of the Z-rings are shown
for the shell-ring frequencies in figures 4(a), 4(c), 6(a), and 6(c). The largest effects
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occurred for modes in which the ring influence was the largest. For these modes, fre-
quencies were reduced by as much as 43 percent (e.g., m=2 and n=6 in fig. 4(c)).
Secondary inertias accounted for at least one-half of these frequency reductions which
are considerably larger than those reported in the literature for stiffened cylindrical
shells., The fact that these effects are in sharp contrast to the negligible effects obtained
by McElman in reference 9 may be due largely to the conical orientation of the stiffeners
and, to a smaller extent, to the Z-shaped stiffener cross section. Thin-wall rectangular
and hat-shaped cross sections were considered in reference 9, and secondary inertias
were not included therein. From figures 4(a) and 6(a), it is evident that inclusion of the
secondary stiffnesses and inertias improved agreement between theory and experiment
for some modes and not for others. For example, the agreement was improved for
m=1 and n=3 infigure 4(a)andfor m=1 and n=3 andfor m=2 and n="7
in figure 6(a), but the agreement was made worse for m=1 and n=8to 18 in

figure 6(a).

Figures 5 and 7 indicate that the effects on analytical mode shapes of including
secondary stiffness and inertia Z-ring terms were also largest for the ring-dominant
modes. For the shell-dominant modes, these additional terms had a negligible effect on
the mode shapes of the single Z-ring model and a small effect on those of the two Z-ring
model. Large localized mode~shape variations close to the ring at the free end were
obtained for the secondary terms as for the primary terms, but no consistent secondary

effects were discernible in this region.

Limitations of the Analysis

Although the foregoing results indicate the adequacy of this type of modal analysis
for prediction of the vibration modes of a locally reinforced conical shell, certain limi-
tations encountered in the application of the analysis merit comment.

One such limitation is the number of functions that can be used to approximate the
meridional mode shapes of the u-, v-, and w-displacements. More power-series func-
tions are needed to obtain converged solutions as the number of discretely treated stiff-
eners increases, but the number of functions is limited by the accuracy obtainable in the
solution of large-order eigenvalue equations of the form of equation (18). In the present
study, no more than 19 simple power-series functions could be used to approximate each
meridional displacement component for the two Z-ring model without causing enough loss
of accuracy to result in negative eigenvalues. This loss of accuracy was due to the
spread in magnitude between the highest and lowest eigenvalues of the mass-inertia
matrix in excess of the double precision capabilities of the computer. Obtaining these
eigenvalues is an essential step in the execution of the threshold Jacobi method, which, as

previously noted, was used in this investigation.
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Another limitation of the analysis is the failure of the strain-displacement rela-
tions for the secondary stiffnesses in equation (7) to satisfy all the rigid-body modes of
the ring-stiffened conical shell or the conically oriented free ring. Consequently, the
lowest free-free ring-shell or free-ring frequencies were not all zero for n=0and 1
as they should have been to correspond to rigid-body translations and rotations. This is
evident in table V for the free-ring analytical frequencies and can also be shown for the
frequencies of the free-free ring-stiffened shell. The effect of this limitation on the
free-ring analytical frequencies for n = 2 could not be fully evaluated because both
primary and secondary stiffness terms were needed to obtain meaningful frequencies
from the solution of equation (20). (Secondary inertia effects are seen to be negligible.)
These frequencies are therefore considered to be approximate at best, although they are
in fair agreement with the experimental frequencies over the n-range covered. Compari-
sons (not included herein) of analytical shell-ring frequencies of the free-free base-ring
configuration with and without secondary stiffnesses indicated frequency differences of
over 40 percent for n =2 in the second family of free-free modes (m = 1), with the dif-
ferences diminishing to less than 1/2 percent at n =4 and 5. Since, as previously noted,
the strain-displacement relations associated with only the primary stiffnesses in equa-
tion (6) do satisfy all rigid-body translations and rotations, the four lowest free-free
shell-ring frequencies for m=0 and n=0and1 andfor m=1 and n=0and1
are zero for this approximation. The consequences of this limitation on the analytical
clamped-free shell-ring vibration modes of the present study are not fully understood,
but they are believed to be of less importance than they are for the free-free vibration
modes.

CONCLUDING REMARKS

A Rayleigh-Ritz vibration analysis is described and applied to a wide-angle, iso-
tropic, ring-stiffened conical shell for which experimental frequencies and mode shapes
are available for comparison. Power-series functions are employed to approximate
meridional mode shape components of the in-plane and normal displacements, and these
series satisfy displacement boundary conditions for a conical-shell frustum clamped at
the small end and free at the large end. Rings are treated as discrete elements of arbi-
trary cross section, and in the present study strong effects on the shell-ring vibration
modes are shown for rings of Z-shaped cross section,

Good agreement between analytical and experimental frequencies and mode shapes
was obtained for a shell with reinforced end clamping involving a base ring of rectangular
cross section. Analytical results were converged with 12 power-series modal functions
approximating the normal (or w) displacement component for the shell without Z-rings,
16 w-terms for the shell with a Z-ring attached at the free end, and with 17 w-terms for
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the shell with two Z-rings., The agreement between analysis and experiment was best
for the shell without Z-rings and was better for the shell with one Z-ring than for the
shell with two Z-rings, The agreement was also better for circumferential modes where
shell effects predominated than for these modes where ring effects predominated.
Although the need for more power-series terms was indicated in order to converge some
modes of the two Z-ring model, no more than 19 power-series functions could be used in
the present analysis to obtain accurate results and possibly to improve agreement with

experiment.

The results of this study also show that for this type of configuration significant
effects and some improved agreement with experiment can be obtained by introducing
into the analysis secondary terms to account for out-of-plane bending stiffness, stiffener
asymmetry, warping, meridional eccentricity, and rotatory inertia. Inclusion of these
secondary stiffnesses and inertias of the rectangular-shaped base ring produced generally
negligible effects for the model without Z-rings. However, for the model with Z-rings,
the effects on frequencies and mode shapes were large, with a change in frequency of over
40 percent occurring for some of the ring-dominant modes. For the shell-dominant
modes, the secondary effects were negligible for the single Z-ring model and caused only
a small change in frequency for the two Z-ring model.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 24, 1969,
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APPENDIX A

ESSENTIAL FEATURES IN THE DERIVATION OF STIFFNESSES
IN A RING ATTACHED TO A CONICAL SHELL

This appendix presents the essential features of the derivation of the circumferen-
tial strain-displacement relation, equation (2) of the main text, and indicates how this
relation is utilized to obtain the ring strain energies in equations (6) and (7). The deriva-~
tion is the same as the one developed in reference 9 for doubly curved shells and is
applied herein to a ring made up of thin cross-sectional members and mounted on a coni-
cal shell.

By following the procedure in chapter VII of reference 9, the total displacements in
the ring in its local coordinate system (fig. 1(a)) may be written as

TR 5% (A1)

wi(5.8.2) = W(p,2) - 8 0i($,2)

where 1, V,and W are displacements of the ring in the ¢-z plane. (The subscript t
in egs. (A1), (A2), and (A3) denotes total displacement.) The relations in equations (A1)
are based on the assumptions that the displacements are linear through the ring in the
meridional direction and that transverse shear in this direction is neglected (i.e.,

8¢ = y8% = 0 as in ref. 9). The displacements of equations (A1) must be compatible
with those in the shell at the ring location, and this requirement is expressed by

{i(cf) ,2) = ut(sR,qb,z) = u(SR,qb> +2P1 R
17(@,2) = Vi sR,d),z) = v(sR,qb) +z¢2 R (A2)
5(6:4) - wont) = (o)

where b4 R and ¢2 R are rotations in the §-Z and ¢-z planes, respectively, at
the ring- shell 1nterface and are given by

P10 (- 5y
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and
0] =L v cos O - —)
2’R I‘ 3(}5

The expressions at the extreme right of equations (A2) are the total displacements in the
shell at the ring location. They are assumed to be linear through the shell in the
Z-direction, with u(sR,¢), v(sR,¢>), and w(sR,gb) being the displacements of the shell
middle surface,

Substitution of equations (A2) into equations (A1) gives the following expressions
for the ring displacements:

g = ug +z61 R

Bu 9¢
Vi = VR + ZPg R" <8¢R +Z a(lp’R> (A3)

where

up = u(sg,%)

vR = V(Sps%)

Wg = W(SRs9)

R _ bu(s,9)

¢ 0o S=SR
and

91 R 991(s,)
o0 99

S=SR

The strain-displacement relations for the shell at the ring location may be written as
follows:

€13,R=0 (Ada)

vy

€2 R = 1 <a¢ + Ut sin 0 + w; cos 6> (Adb)
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Substitution of equations (A3) into equation (A4b) gives

e ——1—1R-+u sind+w cosﬁ+zm+¢ sin 6
22,R'rR 8¢ R R 1,R

9¢
2 2
.| 8%ua )
-s-—R—+¢1Rcos5+z—g-’B (A5)
rRa¢2 ) rRa¢2

Equation (A5) may also be written in the form of equation (2) in the main body of the
report.

In the substitution of equation (2) and equation (1f) into equation (5) to yield equa-
tions (6) and (7), all the rigid-body modes listed in the following table are satisfied for
the strain-displacement relations associated with the primary stiffnesses in equation (6):

Description u v w
Axial displacement. . . . . . . cos & 0 -sin §
Roll about cone axis . . .. .. 0 r 0
Sidewise translation . . . . . .|cos ¢ sin & -sin ¢ cos ¢ cos &
Rotation about apex . . .. .. 0 -5 cos 0 sin ¢ s cos ¢

2
However, in equation (7), the strain-displacement relations < 07u_ _ W oo 6> and
R

T 3¢2 as

3
< 32 w > satisfy only the rigid-body axial displacement and roll displacement about
8¢) s R

the cone axis but not the rigid-body side translation of the cone or '"'side" rotation of the
cone about its apex. It may also be noted that the strain-displacement relations in ref-
erences 8 and 9 do not satisfy all the rigid-body modes of a cylindrical shell, which may
be obtained from those in the foregoing table with & = 0, s replaced by an axial coor-
dinate x,and u = -r cos ¢ for rotation about the end of the shell,
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APPENDIX B
MATRIX ELEMENTS OF SHELL-RING FREQUENCY EQUATION

This appendix lists the matrix elements of equation (18). Included also are evalu-
ated forms of the integrals and ring displacement components based on the power-series

function
S - Sl m
Xmu = Xmv = Xmw = (g7 —5
2 1
where, in general, m=0,1,2,....

Shell Matrix Elements

The shell matrices in equation (18) are identified by the subscript ¢, and their

elements are as follows:

S S
. 2 1 1 . 2 ! !
=gsin 6 ‘Ss X. X sds + usin d ‘qu (Xjuxmu + Xqumu>dS
1 1

Ajm,c ju mu

2 - s 2,425 10201 s
+ sin 6<1 g 1-p “>S‘ 2Xqumu%§+n cot”6 h'(1 “)S zxjuxmud—g
S

sin2s 2 54 sin 6 96 s
(B1)
s s s
2 2 ds 1 - 2 ' ds
s ] s 2 s
1 1 1
( £25) hzgl - ) (%2 . (x' - Zmv)ds (B2
+ {CO 39 < ju mv _S S_Z )
1
S s
2 2 ds
Ejm,c = €08 o S; Xqumw ds + S\s XjuXmw 5
1 1
2 2 s X
n h(1-u)5'2x_ <X' _Xmw\ds
sin26 24 s M mw s /g2 (B3)
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s
F. ‘g‘ 2 ds S‘ 9 ' ' d
im,e = 5in s X]Vva S 4 (sin 5)( 3 ) ‘) (Sva - va>(sva - va)_s_s.
2c0t25 h2 (S
nécots h S’ 2 ds 3n2(1 - s X. X
o——— s =22 IJ-! 2/, \Z \
sin g 13 Tavim Gyt (ot 0 cos 9T Ll (e - )y - T (B

G; _ncottSS‘2 ds _ 52 ds
m,e Xiv¥mws ~t13) ° XivXmy 5

n“X 2
+csc b h2 S‘ 2 < MW _ %' gin 5)98 . h7(1 - p) sz(x'_ - X_J_!)(X' _ Xmw\ds
2 1 5 /8 (B5)

2 s
H; -cotécoséyzx <. ds  h7f . 5'2 ot
]m mw g + 12 sin § 51 X]WXmWS ds

2
So/ neX.
2 w ' 9 n2x
—I‘LS‘ < - - X s1n5> dS- 5. T OmMwW ot .
sy S sin jw H ]w ssins me sin &/ds
Sq 2x
+ CcSs¢ 55‘ i " Amw o' ds
sy <s sin 6 X] sin 6)(5 sin & me sin 5)
2 S2 ' X 1 X
+ 2n%(1 - S\ e A4 _ “mw|ds
( uese o sy (X]W s Emw s /s (B6)
)
s1n 5} 2
®%im S‘ XjuXmys ds
. s
5 2
B; =ﬂ“—§ XiyXpyS ds
jm,cC rg s jvomy (B7)
_sin 6 ("52 -
Yime = " g ijmWS dSJ
S |

where r has been replaced by s sin §, and primes with the symbol X denote differen-
tiation with respect to s.
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Ring Matrix Elements
The ring matrices in equation (18) are identified by the subscript R, and their

elements are as follows:

_ 1 s 2 n cos 6\
Ajm,R = -r—R—|EEA)R sin“% + (GJ)R(—4rR )]Xju,RXmu,R + AAjm,R

z 3(GJ) X sin &
B. =2 x EA), sin & 1+—B-cos5X R 2 ! v,RT B9
jm,R g X]u,Rl} )R ( rg mv,R + 16rR cos”o va,R g + ABjm,R ( )

2
n meR

_sin t s
Ejm,R = T Xju,R,EEA)Rme,R cos § + (EA)RZR<-r—R?— - me,R sin 5)

2 X sin &
ncot 0 [t mw,R B10
; -t My

(GJ)R 4r <me,R R > AEjm,R ( 10)

1] 2 ZR n cos 6\
F. == A - X. X DCOS OV _x
jm,R rRl} (E )R<1 +2 TR cos 6) iv,R°mv,R ¥ (EIS)R< TR ) iv,R mv,R

X. sin § X sin &
9 2 ' v,R ' mv,R
v v, - :
+ 7a(GI)g cos“d <X]v,R TR ><va,R e ):| (B11)

2
n ZR T Amw,R '
. = ——I(E — . —_— i
Cim,R = 7q| AR 08 5<1 * 1R o0 5>X]v,Rme,R + (EA)RX]'V,RZR< TR X mw,R Sin 0

(EI) n2x
R mw,R ' .
+ TR va,R cos 6<T - me,R sin &

sin 6

3(GT) X. sin & X
R
+— T cos 6 <X}v,R - _Lv,R_>(X ﬂ:R_> + MG p (B12)

Tp mw,R ~ TR

-1 2 2 ZR
Hjm,R = rREEA)RXjW,Rme,R cos“6 + 2n“(EA) B ij,Rme,R cos &

- 1 1
- (EA)gzp, sin 6 cos G(ij,Rme,R + ij,RXmW,R>

an'W R ' I12Xmw R '
+ (Els) ——J—r—rR - Ky, i O\ —0= - Xy, sin 0

X. sin 6 X sin &
2 ' _iw,R ' _ "mw,R
+n (GJ)R<XjW,R TR ><;(mW,R Im H + A, R (B13)
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Qs = E—REE ApX. X + Aa, (B14)
]m,R r(z)pch R ]u,R mu,R ]m’R
PR'R Sp _IszR
(aB)jm,R = r—(z)-n n AR }-1—2-'- —rzl;— cos & Xju,RXmV,R (B15)
c
(ay) =Iﬂ-A z +n2-1—2-?BX X! +n215—z?EX X (B16)
Y)im,R rzp h R™R r2 ju,R“mw,R r2 ju, R "mw,R
0%c R R
PR'R
Bjm,R = _—rcz)pch ARXjV,RXmV,R + AB]m,R (B17)
) RO Is R I1 R €0S \
BY)im R = 2oh \ARZR g ©0% 9%v,REmw,R ~ sz, R * T v, R mw R
0fc
(B18)
PR'R
Yim,R = 5. “R¥jw R¥mw,R * 2%jm,R (B19)
’ rOp h ? b H
c

The subscript R with the symbols X and X' denotes evaluation of these modal func-
. . . _ 1 _d o
tions at the ring location; for example, Xju,R = Xju(sR)’ XjW,R =35 X]W(s) s and so
R
forth. For consistency with the strain and kinetic energies in equations (6), (7), (14),
and (15), the dominant or primary stiffness and mass-inertia parts of the elements are
given first and are followed by the secondary parts, which are specified as follows:

2 P
_[n A n
AAimR= <§> [Z(EA)RSR sin 6 + (Elg) r_RJXju,RXmu,R (B20)
AB _nd (EA)p8p, + (Blgg), S50 % (B21)
jm,R = T R°R * \*'82/R T [Mju,R mv,R
R
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2
X
-~ 1 .
AEj RIS (EA)RSRXju,R cos 6<—r—’ + me,R sin 6>

2 2
n“X. n°X
u,R mw,R ' .
+ (Elsz)g —5o < = = 2Xw,R S0 6)

'R 'R
ZX]u Rme R €08 0 n4Xju RX'mw R
+ (Elz)g TR - (El2)g o (B22)
R
2
n ~ (EISZ)R( 25 2) B (EII)R 5 '
AGjm R = 7=|(EA)RSR cos 6 + —g——\c08"d - 0%/ - ——5—— C0S va,RXmW,R (B23)
’ R R rR
_ 1 a 2 1 1 .
MMy R = T (EA)RSR cos 5(X]w ¥mw R * Xjw, X R) (EISZ)RXJ.W,RX taw R Sin 20
gr). 220 g % X. X 2X: X! sin &
'( 1);{% ( iw,R°mw,R ¥ %jw,R me) jw, R mw,R
EL,)
' 2 2 ( 2/R 1
+ (Blz)gX]y, RXmw R €05 0 - 20 v Xjw, R mw,R % 5
X, X
+ nt(ED), AL mWJR} (B24)
r2
2
PR" Iz R
Ag, o= ZRx _x (B25)
jm,R rgphrR ju, R mu,R
PR %% O s ISR os g%, X (B26)
AB. = Zn + cos :
BJm,R r%ph R*"R " T jv, R mv,R
AYim R~ 3 2 ij,Rme R* |ARSR - —3 ( iw, R mw,R T “jw, R¥mw R)
rophf r T
0 R R
I'pn
R ' '
+ Je,R + r2 XjW,Rme,r (B27)
R
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The off-diagonal elements of the mass-inertia matrix (eqs. (B15), (B16), and (B18)) are
also considered secondary terms.

Mode-Shape Integrals

S -5
With X, = (sz—-s%) , the number of integrals in equations (B1) to (B7) reduces

to 14, each of which is evaluated as follows:

s s
(2. ez 1 51 1
II-S‘SI X]XdeS—L<j+m+2+Lj+m+1>

j+m j+m-k
s s j+m ( 1) < ?) -1 . 52
Iy = § 2 Xij d?s_ = (il—) @ + m)! i . + (_1)]+m log =
8y 1

k=0 G+m-kk(+m-k

j+m . [ g\J+m-2-k
o \j+m-2 1) < ]> -1 -2
I3 = § XXy 98 f—(—l) G+ m) E ( . + GG m) e m - 11og 2

2\L j+m-k!kI(j+m-2-k)
k=0

s

2 ' m
I =§ X;X  ds =
5 51 17m j+m

2 1 5 1
= XX = —
I ‘§51 iXmS ds ]m<] m+Lj+m—1>

j+m-1 2;|+m2k

S2 ds _ m/[%1 Jrm-2 (I)I:( > ) j+m-2 )
I =S XX ._=_<_) - -1 ~DIEG 4 m - 1)log 2
T7Jg, 2T (T (+m-1) o G+m-1-k) KGrm-z-m Y G+ Nog 5~

j+m-1 j+m-2-k 7]
Sg ds_ § J+m2 E (-1) <f> -1 . 6
= x 98 -1 —— j+m- - =
Ig 551 X]Xms2 G+m- 1) - (G+m-1-KK(Gsm-2° )+(1) (i +m - log 2 5

j+m=~2

2 j+m-2-k ]
1) -1
s g\ J+m-2 (- ( ) N Sg
Ig:j-SzXSX;n ds=]_2__1 (G+m-2) G TH + (st 2logq
1

s =0 j+m-2-k'K({+m-
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j+m-2 ([75q+2K
s 5. \j+m-2 (-1) <— -
2 n ds _m(m-1 ( 1) s 8 j -2 82
I =f xx" 95 _mim - 1)/71 +m-2) -p)tm =
10 s, T mE Lz \L G+m-2) - Grm -z 0EGrm-2-1 Y log 57
j+m-2 g \j+m-2-k
Sy ds _ i - 1) (84\*m2 = <§2_> i 8
1 =§ XXy, S8 -0 (-) (+m-2) 1 + (-1)im=21, °2
11 s m’s L2 \L = G+m-2-K'K(G+m-2-k - ® 5]
Iip = §52 xx ds =L imm -1
12 sy I'm L2 j+m-2
. .
2 Mt 1 jm(@ - 1)
I =S‘ X.X ds = —
13 sy i%m 12j+m-2
S s 5o - S
114 =5‘ 2 vaxﬁls ds = ]m(] 1)(m 1)/ 1 : _1 1
sq L2 \j+m-2 Lj+m-3

Mode-Shape Functions of Ring

Power-series modal functions in equations (B8) to (B27) at the shell-ring interfaces

involve the following functions:

30

SR - 51 j+m
Xj,RXm,R= -—L— (B28)
s - g \j+m-1
{ m( R 1
Xj,R¥m R = E‘("—“L ) (B29)
. /S - s \j+m-1
' _J[’R 1
Xj,RXm,R = L<——L > (B30)
Xv <' _ jm SR - S]_ j+m-2
i,R"m,R ~ ﬁ L (B31)



APPENDIX C
MATRIX ELEMENTS OF APPROXIMATE RING FREQUENCY EQUATION

This appendix contains pertinent details of the derivation of the approximate fre-
quency equation of the conically oriented free ring as given by equation (20). Included
are the basic strain-displacement relationships, strain and kinetic energies, and elements
of the stiffness and mass-inertia matrices.

Strain-Displacement Relations

The strain-displacement relations for the free ring are developed in the same

manner as those for the ring attached to the shell (appendix A) except that (— 8—W—>R is

os

replaced by BR, and (%)R is omitted from the torsional curvature term E12' Thus,

the basic strain-displacement relationships for an approximate ring frequency equation
may be written as

2
ov 9w
1 sov . z|1 R R .
e =——+us1n6+wcos6> + ——|=—|—=cos 6 - + B sin &
22,R rR(3¢ R 'R rR<3¢ a¢2> R
2 2
2 9“u o°B
—%—%+BRcos6+z——R—2 (cy)
R r'n a¢ rp ¢
_ _ Br Svgecosdsind 5 Wp o5 MNp
“12,R= T 0¢ - 472 T3 e 4.2 09 (€2)
R rR rR 4rR

Strain Energy

The strain energy of the conically oriented free ring is developed by substituting
equations (C1) and (C2) into the expression

Ur=3 o S‘AR ERezz,R dAR rg d¢ + 5 ‘§0 K12 R TR do (C3)
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to give
U (EA) 5 6)2 2(EA) (a" in 6 a) TR s 5 - L P
== —+usm + W Cos + Zp (= +u sin 6 +w cos cos 6 - — ——"+ B sin &
R R R R “Ri3¢ R\Tg 20 TR a2 Bg st
asz 2 (GJ)R 2r (o 3v cos & sin & ; aw. au\2
+ (Bls) v L + By sin 8] |dg + y —-—-——+M—E-°°—55—3— do
'R 26 ° rR Top2 4rg TR 8¢ 4rg g
2 1 2
a%u sz v. F*w.
l -2(EA)R1_————+usm6+wcosé> R2+BRcos§ —2(‘E—r)E R oss- R
T2 Rirg 8¢ R |\'r % rg 862

2 2 2

%u B w EII o%w F

+BRsin6 R2+BR6056 +<ﬂ+usin6+wcosé> B cosé-L R+BRsin6 °r
TR 8¢ ¢ % rg 9¢ p a¢2 3¢,2

Ry a:pZJ
Ely 2. o2 EI o2 2 (g 2, \2
+2( Z)R auR2+BRcos5\ BZR+( rz)R/ uR2+BRcos6 +( ?Ri—ﬁ—g d¢
2 \rg 20 / ag R \rR ag 3 \op (C4)

where the cross-sectional properties AR, ..., I'r are defined in equations (8).

Kinetic Energy

The free-ring kinetic energy is given by

27 .2
S:A ut + Vt + Wi JAAR rR d¢ (Ch)
where
. N
U =Up + zBR
. ow ~ (6 o8 g
< . Z R ] R R
V, = Vi, + — |V cosé-——-— Z — C6
t='r rR<R a<¢>> <8¢ a¢> (€0
Wi = Wg - SBR J
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Substitution of equations (C6) into equation (C5) leads to

PR (27 2 .2 .z) . . Vg oW
TR=_§-S0 AR(uR+vR+WR +2ARzRuRBR +§ VR cosG-W
- al.lR .2 ISR 8‘”:Rz
'ZARRr —¢ + WpBp | +Je RBR+—=-—r2 chosé-—-—8¢
R

1 R aBR<. R Iy g g %p Ty (%R
-2 ——2—-_—lv., cos § - + 2 =2 + —5=|—=] drod CT
R r%{ 8¢ o¢ r%{ 2 R 4¢ (c7

Matrix Elements

With the substitution of equations (19) into equations (C4) and (CT7), the equations
of motion are obtained from the following relations, which are essentially the ring por-
tions of equations (17):

b 2 7
35 (UR - W TR) =0
n,R
_a (UR. - Q)ZTR> =0
8,
(C8)
2 (u 215) =0
a_ R-w TR =
cn,R
_3 (UR - szR) =0
n,R

The operations indicated in equations (C8) lead to equation (20), where the elements of the
stiffness and mass matrices are as follows:

2 ~
(GJ), cos“s s Ely
2 R a2 2(EA)R—B—sin5+n2( )

2 r 2
16rR R rR

2 R

6 +n
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z (G)y cos?s ] EIsz)
K12=K21=nsin6(EA)R 1+i.-f-{cos 6)—3—R— +nd (EA)RI,—R+( R cos 6 (C10)
R 1613 R 1}
(EA) . (GJ)y, sin & cos 6§ Elgz
K13 = K3y = (EA) sin & cos & + n2 R(zR sin & + 8 cos 5) - n2 R +n4 ( )R (C11)
4r2 r2 ’
R R
(GJ),, cos &
- - i ing -8 2 R
K4 =Ky = (EA) sin 6 (ZR sin § - g cos 6) n i
EI
2 (E12)
n . 2 R
+ G{%(EISZ)R sin & - (EIZ)R cos 6 +n = (C12)
z EIS) 9(GJ) sin%6 cos26
R R 2 R
Koo = n2|(EA), [1 + 2 = cos 8] + cos 6 +
22 R< TR > r2 1612 (C13)
R R
z (EIS) cos 8 3(Gy) sin26 cos 6
Kog=Kgg=n (EA)R cos & + r—R(nz + c0325> +n2 R + R (C14)
R r2 41‘2
R R
. 3(GJ)
. ~ b cos d R
Kg4 = Kyg = n(EA)R(zR sin 6 - 8 cos 6) +n &I'RL[(EIS)R +— j|
0 ) (EIl)R cos &
n 2
tin (EISZ?R(n - cos 6) +1 g (C15)
z (EIS) (GI) sinZ6
Kgs = (EA)p cos 6<cos 5 + 2n2 r—R +n? R n2 R (C16)
r2 r2
R R
2 2 sin 6 4 (EII)R
K34 = K43 = (EA) cos G(ZR sin 6 - S, cos 6) +n —r—[(EIs)R + (GJ)R:, +n 3 (C17)
R T
R
Kyq = (Bg)p sin0 + (EL), cos”s - (Elg,). sin 26
44 S)R z)p SzZ/p
2 (ET)
n_ i - 2 2 R
+2 = (EII)R sin 6 (EIz)R cos 8| +n?| (GI)g +n ) (C18)

R
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I
M1 =1 +n2 —Z*R—z (C19)
ARI'R
S, I cos &
Mi2 = M21 =n FE + SZ.R 5 (C20)
R ARrR
2 Isz R
M13 = M31 = n° —2= (C21)
Aer
R
I
Mig = Mgq =2 + n2 2R (C22)
R ARI‘2
R
2
Zr IS R COS 6
M22=1+2r—-cos6+—?-—2 (C23)
R ARrR
z I cos &
M23 = M32 =1n E‘E + —SL (C24)
R ARI‘%
1 I cos 0
Mgg = Myp = n ASZ’R + LE 5 (C25)
R'R  ARry
2 Is R
Mgg =1 +n® —2—— (C26)
ARI‘%
-~ 9 UR
M34 = Myg = -sp +n“ —— (c2m)
ARI‘%
J T
Myq = e,R | n2 R2 (C28)
AR Agrg

In equations (C19) to (C28), the primary mass-inertia effects are given by
Mj1 = Mgg = Mgg3 = 1 and Myy = Je,R/AR- All other terms in these equations are con-

sidered secondary inertias, which are shown in table V to have a negligible effect on the
frequencies of the free Z-rings.
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TABLE I.- GEOMETRICAL AND STRUCTURAL PROPERTIES OF SHELL AND RINGS

(a) Conical shell

ry,including base ring . . . . . ..o e e e e 3in. (76.2 mm)
T e e e e e e e e e e e 24 in. (60.96 cm)
B v v e e e e 107 1b/in2 (68.95 GN/m?)
0.025 in, (0.635 mm)
B i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 60°
e e e e e e e e e e e e e e e e e 0.315
D v e e e 2.54 x 104 Ib-sec2/in? (7.02 kg/m3)
(b) Rings
ER o v e et e e e e e e e e e e 107 1b/in? (68.95 GN/m?2)
GR vt v et e e e e e e e 3.8 x 108 Ib/in? (26.2 GN/m?2)
PR vt r e e e e 2.54 X 10-4 lb-sec2/in% (7.02 kg/m3)
az%?eg)})’ Base ring Z-ring
Attached to shell Free
SR e e e e e 4,0425 in. (102.7 mm) 27.51 in. (69.9 cm) 27.33 in. (69.4 cm)
15.98 in. (40.6 cm) 15.80 in. (40.13 cm)
éR ....... 0 0.164 in. (4.166 mm) 0
ZR e e e -0.0625 in., (-1.587 mm) -0.6025 in. (-15.3 mm) 0
AR « ... 0.1155 in2 (74.5 mm?2) 0.0955 in2 (61,6 mm2) 0.0955 in2 (61.6 mm?2)
Igge » oo v 0.5473 X 10-3 in4 (0.02278 cm4) 0.05273 in% (2.195 cm%) 0.0180 in% (0.749 cm?)
IggR =+ 0 -0.01305 in* (-0.543 cm?) -0.003655 in? (-0.152 cm?)
IRe e v v v 0.01284 in? (0.534 cm4) 0.00411 in* (0.171 cm#) 0.001551 in4 (0.0646 cm%)
Re v 0 0.01332 in® (1.408 cmb) 0
IgR- =« v v o -0.802 x 1073 in% (-0.0848 cmb) -0.00367 in® (-0.3880 cmb) 0
JR v ve e e 0.366 X 1073 in* (0.01523 cm4) 0.86 x 10~4 in¢ (0.003580 cm4) 0.86 x 10-4 in4 (0.003580 cm4)
JoR + v v 0.013387 in? (0.5572 cm4) 0.05684 in% (2.366 cm?) 0.019551 in? (0.814 cm?)
TR + v+ v+« 0.6085 x 10-4 in6 (0.01634 cm6) 0.004027 in® (1,08 cm6) | 4.910 x 104 in® (0.13185 cmb)
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TABLE II.- ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF SHELL WITH BASE RING

Analytical frequency, Hz

Wing ring secondary

Without ring secondary stiffnesses and inertias stiffnesses and ~ | Experimental
inertias frequency,
n Hz
. 6 w-terms 9 w-terms 12 w-terms 14 w-terms 12 w-terms
7 u- and v-terms | 10 u- and v-terms | 13 u- and v-terms | 15 u- and V-terms: 13 u- and v-terms
m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2 I m=1 m=2 m=1
. 0 b253.6 706.3 b253.5 697.0 | P253.5 696.3 02535 696.2 | 0253.5 696.4
516.2 513.8 513.7 513.6 515.2
1 102.4 696.7 97.3 689.8 96.4 689.4 96.3 689.3 100.6 689.4
2 46.2 562.8 43.6 554.5 43.1 552.1 43.1 551.4 46.2 ' 562.7 43.8
3 25.6 357.5 25.0 349.6 25.0 348.7 25.0 348.3 25.9  359.8 25.4
4 19.6 241.1 19.5 238.5 19.4 231.9 19.4 237.9 19.5 241.6 19.6
5 21.5 181.1 21.4 179.3 21.4 177.5 21.4 177.2 21.4 178.2 21,0
6 27.0 153.3 26.9 150.3 26.9 148.9 26.9 148.9 26.9 149.1 26.7
7 33.7 143.0 33.6 140.9 33.6 140.6 33.6 140.6 33.6 140.7 33.1
33.7
8 41.2 142.4 41.0 142.1 41,0 142.1 41,0 142.1 41,0 142.1 40.6
41.3
9 49.3 147.6 49.2 147.4 49,2 147.4 49.2 147.4 49.2 147.4 47.9
49.3
10 58.3 155.3 58.1 155.0 58.1 155.0 58.1 155.0 58.1 155.0 57.8
58.5
11 68.0 164.5 67.9 164.4 67.9 164.3 67.9 164.3 67.9 164.3 67.0
68.6
12 78.7 175.6 78.5 175.3 78.4 175.3 8.4 175.3 78.4 175.3 78.6
79.2
13 90.2 188.7 89.9 187.8 89.9 1817.8 89.9 187.8 89.9 187.8 89.3
90.6
14 102.6 203.5 102.2 201.7 102.2 201.7 102.2 201.7 102.2 2017 101.4
102
15 116.0 219.2 115.4 216.9 115.3 216.9 115.3 216.9 115.3 216.9 113.5
115

2¥rom an unpublished study by Eugene C. Naumann, John §. Mixson, and Earl C. Steeves.
Prorsion (or v) mode,
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TABLE IIl.- ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF CONICAL SHELL

WITH BASE RING AND ONE Z-RING AT THE FREE END

Analytical frequency, Hz

With ring X .
Without ring secondary stiffnesses and inertias Sstqcondary s‘glctglngg% 4Experimental
1ifnesses stiffnesses frequency,
n and inertias Hz
9 w-terms 12 w- terms 16 w-terms 17 w-terms 16 w-terms 16 w-terms
10 u- and v-terms 13 u- and v-terms 17 u- and v-terms 18 u- and v-terms 17 u- and v-terms 17 u- and v-terms
m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2 m=1 m=2
0 b203.6 643.6 b203.6 636.7 b203.6 630.6 303.6 630.2 04,5 637.2 b203.6 625.8
419.4 417.8 414.8 414.6 408.3 412.5
1 78.0 600.0 7.2 592.9 77.2 584.8 77.1 584.3 79.8 567.5 80.1 577.2
2 3T 481.4 37.0 478.2 36.7 475.2 36.6 475.1 37.9 478.5 38.4 479.6 38.2
3 50.1 308.3 48.4 307.7 45.8 306.1 45.8 305.5 41.0 313.7 42.4 314.9 42,5 309.1
4 95.5 213.3 92.2 212.6 86.8 212.2 86.6 211.5 71.0 210.2 75.8 214.1 80.5 208.9
211.2
5 131.8 204.2 129.6 198.6 125.6 193.2 125.6 192.3 108.2 163.7 115.3 177.8 123 178.4
179.0
6 120.3 290.0 119.2 281.8 118.2 271.4 118.2 270.0 116.2 189.6 116.8 2315 116.6 242.1
7 116.0 293.2 115.7 291.2 115.3 288.8 115.3 2817.9 114.9 248.9 114.9 279.9 115.3 276.5
8 119.0 276.1 118.9 275.7 118.6 274.6 118.6 274.3 118.6 271.5 118.6 273.0 116.9 264.8
9 125.2 269.4 125.1 269.2 124.8 268.4 124.8 268.3 125.0 267.9 125.0 267.9 123.2
10 133.4 268.7 133.3 268.5 133.0 267.8 132.9 267.8 133.3 267.8 133.3 267.8 130.7 258.1
261.3
11 143.3 272.2 143.1 272.0 142.7 271.3 1427 271.2 143.2 271.5 143.2 271.5 139.6 265.9
12 154.7 279.0 154.5 278.7 154.0 278.0 154.0 278.0 154.6 278.4 154.6 278.4 150.4
13 167.4 288.6 167.2 288.3 166.7 287.6 166.6 2817.5 167.3 288.0 167.3 288.0 162.3
14 181.5 300.8 181.3 300.3 180.6 299.5 180.6 299.4 181.4 300.1 181.4 300.1 | 175.5 | 290.2
295.9 |
15 196.9 315.0 196.6 314.5 195.9 313.6 195.8 313.5 196.7 314.3 196.7 314.3 187.2
16 213.5 331.1 213.1 330.7 212.3 329.7 212.3 329.6 213.3 330.5 213.3 330.5 201.9
17 231.3 349.2 230.9 348.8 230.0 347 229.9 3417.6 231.0 348.5 231.0 348.5 221.4
18 250.3 369.6 249.8 368.7 248.8 367.4 248.7 367.2 249.9 368.3 249.9 368.3 243.0

4From an unpublished study by Eugene C. Naumann, John S. Mixson, and Earl C, Steeves.

brorsion (or v) mode.
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TABLE IV.- ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF CONICAL SHELL
WITH BASE RING AND TWO Z-RINGS

\ T Analytical frequency, Hz
o With ring e
I Without ring secondary stiffnesses and inertias sst?fcgédsig s\glctt})lngg;gy a%ﬁggiitgg;tal !
N and inertias stiffnesses HZ
13 w-terms 15 w-terms 17 w-terms 18 w-terms 17 w-terms 17 w-terms
14 u- and v-terms | 16 u- and v-terms | 18 u- and v~terms | 19 u- and v-terms 18 u- and v-terms 18 u- and v-terms
m=1 m=2 m=1 ‘m:Z m=1 m=2 : m=1 m=2 m=1 m=2 m=1 m=2 m=1|m=2
0 b197.1 | 619.6 big7.1 ‘ 618.9 b197.1 615.7 b197.1 615.6 b198.2 620.7 b197.1 610.4
4125 409.4 409.3 409.0 402.6 406.7
1 74.9 574.9 74.8 572.3 74.8 569.6 74.8 569.3 76.9 553.9 77.3 562.6 70.4
2 61.4 446.1 57.2 438.8 54.9 438.5 53.7 436.7 50.0 437.1 50.8 441.6 40.3
3 96.5 415.3 91.5 393.0 90.0 380.0 89.3 372.8 7.4 346.7 80.5 357.8 60.1 286,0
4 118.5 454.2 114.5 437.8 114.4 424.6 114.3 420.2 94.7 367.7 102.8 382.7 102.0 399
5  181.3 418.5 175.9 412.0 174.9 403.3 1747 402.0 129.6 373.6 149.4 384.1 159.0 330.0
6  270.8 361.0 263.6 359.6 261.8 354.2 261.7 353.3 183.0 344.3 222,2 354.9 235.6  307.0
7T 2817 339.7 2178.9 338.1 278.1 332.8 278.1 332.4 242.1 312.1 270.7 334.1 263.5 307.0
8  253.0 337.2 251.5 336.1 250.6 332.9 250.6 332.7 254.6 336.8 256.6 336.8 245.8 316.0
326.0
9 228.2 351.1 227.2 349.8 226.2 348.0 226.1 347.9 235.1 354.7 235.3 354.8 2115 342

216.0
10 210.2 374.8 209.5 373.1 208.4 371.8 208.2 371.7 217.9 381.3 218.0 381.4 200 359.0

11 199.0 404,7 198.4 402.4 197.2 401.2 197.1 401.2 206.0 413.3 206.1 413.4 183.2  399.0
12 193.9 418.1 193.4 413.4 192.2 412.7 192.0 411.4 199.7 426.7 1997 426.8 438.0
13 194.1 405.4 193.7 400.2 192.5 399.2 192.3 397.7 198.5 412.6 198.5 412.6 178.0
14 199.0 396.4 198.7 390.8 197.5 389.8 197.4 388.0 202.2 402.1 202.2 402.2
15 207.8 392.0 2017.6 386.1 206.5 385.2 206.4 383.53 210.1 396.3 210.1 396.4 201
16 219.9 392.2 219.8 386.2 218.8 385.4 218.7 383.54 221.5 395.2 221.5 395.2 211
217
17 234.8 396.7 234.6 390.8 233.7 390.1 233.7 389.3 235.9 398.6 235.8 398.6 226
18 2518 405.2 251.17 399.6 250.9 399.1 250.8 396.3 252.6 406.4 252.6 406.4 246
19 270.8 417.5 270.6 412.3 269.8 412.0 269.8 410.8 271.3 418.1 271.3 418.1 264 400
20 2914 433.2 291.1 428.5 290.4 428.4 290.4 4217.8 291.7 433.5 291.7 433.5 286
21 3134 451.9 312.9 448.0 312.3 4417.9 312.2 447,68 313.6 452.1 313.6 452.1 309
315
22 336.6 473.5 336.0 470.2 335.4 470.1 335.3 468.8 336.7 473.8 336.7 473.8 3217
330
343

2From an unpublished study by Eugene C. Naumann, John S. Mixson, and Earl C. Steeves.
bTorsion (or v) mode.
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TABLE V.- ANALYTICAL AND EXPERIMENTAL FREQUENCIES

OF CONICALLY ORIENTED FREE Z-RINGS

Analytical frequency, Hz

aEfxperimental
; : requenc
n With ring secondary stiffnesses and inertias sec ongg;‘t;l slzclllgfgn esses qHz Vs
1st mode Dominant 2d mode Dominant 1st mode 2d mode 1st mode 2d mode
eigenvector eigenvector
(a) Large Z-ring
0 0 wR 0.34 VR 0 0.34
1 .24 wR 2.83 VR 24 2.83
2 6.97 WR 17.9 up 6.98 17.9 8.8 16.2
3 27.0 WR 44.9 uR 27.1 44.9 25.0 46.4
4 64.8 Up 86.2 wp 64.9 86.3 64.2 90.3
5 115.7 up 151.1 wR 115.9 151.5 107.1 153.6
6 174.2 up 245.6 BR 174.4 246.4 161.2 244.6
7 241.5 up 364.9 BR 241.,7 366.3 223.1 357
8 318.4 uRp 503.0 BR 318.7 505.2 295.7
9 405.2 up 655.9 ,BR 405.6 658.7
10 502.0 up l 821.3 BR 502.5 824.7
(b) Small Z-ring
0 0 wR 1.01 VR 0 1.01
1 .95 wR 8.47 VR .95 8.47
2 22.8 wR 53.6 up 22.9 53.6 21.2 41.4
3 90.2 wR 135.0 up 90.5 135.1 86.5 126
4 210.9 up 266.2 wR 211.8 266.8 190 251
5 358.4 up 477.6 Br 359.2 480.2 315 443
6 529.5 up | 759.2 BR 530.4 764.4 472
7 728.9 up I 1091 BR 730.1 1099 668

1874

4From an unpublished study by Eugene C. Naumann, John S, Mixson, and Earl C, Steeves,
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Figure 1.- Geometry and coordinates of conical shell and ring.

42




s v v A A

2p=-063 in.

Y

’(Nt(-l.S?Bmm) !
> L AN AN
s

Ay

\ Ay

o~ 7 - -~ P d /\3 /\ /\‘ e
L in.
9 | (76.20mm)
(/(j 43_ [ 4in. o
8-6‘(9 : (101.60 mm)
’77,7)/
Base ring

/1/ Center block
! 10 1n

.025 in.
(635 mm)

A e e

Base ring
(Shell bonded to ring)

{b) Geometrical details of ring stiffeners.

Figure 1.- Concluded.
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Figure 2.- Frequencies of 600 clamped-free conical shell with base ring for m = L
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Figure 3.- Meridional mode shapes of 600 clamped-free conical shell with base ring.
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(a) Experimental frequencies and analytical frequencies based on primary ring stiffnesses.

Figure 4.- Frequencies of 609 clamped-free conical shell with base ring and Z-ring at free end.
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(b) Comparison of analytical shell-ring frequencies and free-ring frequencies.

Figure 4.- Continued.
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{c) Effects of ring secondary stiffnesses and inertias.

' Figure 4.- Concluded.
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Figure 6.- Frequencies of 60° clamped-free conical shell with base ring and two Z-rings.



Frequency, Hz

520
480
440
400
360
320
280
240
200
160

Analysis

/ —————— Ring secondary stiffnesses

1201
/6 and inertias omitted
————— Small free ring
80t —————— Large free ring
Experiment
/ ¢ First mode Large free ring
40 / / A Second mode
/ //<> & First mode )
/ /% o Second mode{ Small free ring
— =z ] 1 ] 1 I L 1 i 1 ]
0] 2 4 6 8 10 12 14 16 18 20

Number of circumferential waves, n

{b) Comparison of analytical shell-ring frequencies and free-ring frequencies.

Figure 6.- Continued.
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Figure 7.- Meridional mode shapes of 600 clamped-free conical shell with base ring and two Z-rings.
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